Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty
نویسندگان
چکیده
MOTIVATION Several measures have been recently proposed for quantifying the functional similarity between gene products according to well-structured controlled vocabularies where biological terms are organized in a tree or in a directed acyclic graph (DAG) structure. However, existing semantic similarity measures ignore two important facts. First, when calculating the similarity between two terms, they disregard the descendants of these terms. While this makes no difference when the ontology is a tree, we shall show that it has important consequences when the ontology is a DAG-this is the case, for example, with the Gene Ontology (GO). Second, existing similarity measures do not model the inherent uncertainty which comes from the fact that our current knowledge of the gene annotation and of the ontology structure is incomplete. Here, we propose a novel approach based on downward random walks that can be used to improve any of the existing similarity measures to exhibit these two properties. The approach is computationally efficient-random walks do not need to be simulated as we provide formulas to calculate their stationary distributions. RESULTS To show that our approach can potentially improve any semantic similarity measure, we test it on six different semantic similarity measures: three commonly used measures by Resnik (1999), Lin (1998), and Jiang and Conrath (1997); and three recently proposed measures: simUI, simGIC by Pesquita et al. (2008); GraSM by Couto et al. (2007); and Couto and Silva (2011). We applied these improved measures to the GO annotations of the yeast Saccharomyces cerevisiae, and tested how they correlate with sequence similarity, mRNA co-expression and protein-protein interaction data. Our results consistently show that the use of downward random walks leads to more reliable similarity measures.
منابع مشابه
CESSM : Collaborative Evaluation of Semantic Similarity Measures
The application of semantic similarity measures to proteins annotated with Gene Ontology terms has become a common method in bioinformatics. However, the evaluation of these measures is still challenging, since no common standard of evaluation exists. We present an online tool for the automated evaluation of GO-based semantic similarity measures, CESSM, that enables the comparison of new measur...
متن کاملGene Ontology-based Semantic Similarity Measures
Quantitative measure of functional similarity between gene products is important for post-genomics study. The similarity measures may be used to validate high-throughput protein interaction data, help the development of new pathway modelling tools and clustering methods, and enable the identification of functionally related gene products independent of homology [Guo et al., 2006, Schlicker et a...
متن کاملInformation Content-Based Gene Ontology Semantic Similarity Approaches: Toward a Unified Framework Theory
Several approaches have been proposed for computing term information content (IC) and semantic similarity scores within the gene ontology (GO) directed acyclic graph (DAG). These approaches contributed to improving protein analyses at the functional level. Considering the recent proliferation of these approaches, a unified theory in a well-defined mathematical framework is necessary in order to...
متن کاملBi-directional semantic similarity for gene ontology to optimize biological and clinical analyses
BACKGROUND Semantic similarity analysis facilitates automated semantic explanations of biological and clinical data annotated by biomedical ontologies. Gene ontology (GO) has become one of the most important biomedical ontologies with a set of controlled vocabularies, providing rich semantic annotations for genes and molecular phenotypes for diseases. Current methods for measuring GO semantic s...
متن کاملImproving Iranian Intermediate EFL Learners’ Oral Narrative Task Performance in Terms of Accuracy, Fluency and Complexity by Awareness Raising Through Semantic Fields
The effects different awareness-raising techniques might have on language learners’ performance have been studied by many researchers. The present study specifically focused on improving EFL learners’ oral narrative task performance in terms of accuracy, fluency and complexity by awareness raising through semantic fields. The participants in the study included 40 intermediate learners whose ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2012